You are running an unsupported browser, please upgrade your browser. Close

Looking For A Declaration Of Compliance?

Looking For Declarations Of Compliance? View and Download Compliance and Safety Documents Here!

Looking For Declarations Of Compliance? View and Download Compliance and Safety Documents Here!

Microflow system offers 10 months payback in cheese brine purification

Pall® Microflow Brine system offers 10 months payback in cheese brine purification

Overview

 

Salting by immersion in brine is used for many varieties of cheese worldwide. During repeated immersions fat, curd particles and microorganisms from the cheese plus the accumulation of proteins and other components builds up a nutrient-rich environment for the salt resistant microorganisms. Reused brine may then become a reservoir of unwanted microorganisms, such as gas- or pigmentproducing bacteria, yeast and mold, or salt resistant pathogens, cross-contaminating the cheese and impacting their quality. Good control of the brine and the brining operation is essential to ensure consistent daily production. Additionally, brine disposal is coming under increasing focus. High disposal costs or volume limitations in specific areas are driving the demand for greater brine reuse, to generate operating cost savings and minimize the plant environmental footprint. 

 

The Challenge

A reputable cooperative producing DOP (Designated Origin of Production) hard cheese of Grana type in Northern Italy wanted to optimize the quality of the brine at various plants and reduce its overall costs for waste stream disposal. Owned by 30 small producers, the cooperative was looking for a user-friendly, simple technology to be installed in a truck for regular operation at each of the cheese plants. Brine had a typical turbidity of >100 NTU.

 

Microfiltration, at regular intervals of 3 to 6 months depending on the dairy, was selected to reduce the cheese cross-contamination risk and to provide high brine clarity, both influencing the cheese quality. With the high local disposal fee for salty effluent, it was clear that brine microfiltration would lead to significant benefits. The length of the brine salting process is 20 days on average, in pools ranging from 20 to 200 m3 (5,283 to 52,835 USgal), and throughput of 2 m3/h (528 USgal/h). Other important requirements included the ability to handle high contaminant load and variation from batch to batch, optimized water and chemical consumption during cleaning cycles, and user-friendly operation with reduced labor and downtime.

 

The Solution

Pall Microflow Brine Microfiltration Systems Pall Microflow Brine microfiltration technology provides constant and high filtrate brine quality and a reliable environmentally-friendly solution to extend the life of brine and prevent cheese quality downgrades. Typical performance of the Microflow system is a filtrate turbidity below 0.8 NTU, combined with high microbial reduction efficiency, typically up to a log reduction value (LRV) >5 in operation in the cheese plant, and up to LRV >10 when challenge tested with Listeria by an external laboratory.

 

The system consists of robust Polyvinylidene Fluoride (PVDF) hollow fibers with high mechanical strength and excellent chemical resistance, capable of high flux rates, within in a compact system footprint. When operated with an optimized combination of hot water and chemical cleaning sequences, reductions of up to 50 % in water usage and 30 % in cleaning time and chemicals have been demonstrated, compared to other membrane systems. Pall® Microflow Brine system offers 10 months payback in cheese brine purification Application Bulletin Pall Microflow System Key features of the Pall Microflow Brine system include:

 

 

  • PVDF membranes with high mechanical strength for longer service life 
  • Backflush capability of the Microza* hollow fiber membrane, maintaining a higher flux over a longer operating cycle
  • Hollow fiber membrane with a 1.4 mm open channel for optimized cleaning
  • On board cleaning / waste concentration tanks
  • Automated chemical dosing for operator safety
  • Water filtration, cleaning temperature control
  • All product-wetted components in 316L stainless steel
  • Fully automated cycle programming for unattended operation

 

Additional equipment, including a hot water production unit, a chiller and a coarse bag filter to remove large particles and fines, completed the installation on the truck for efficient and autonomous operation. The Microflow Brine technology platform addressed the need for reliable and cost-effective brine regeneration – a solution that eliminates the use of traditional solutions such as DE pre-coat filters or heat exchangers. 

 

The Benefits

The Pall Microflow Brine microfiltration system enables dairies to perform clarification at low operating costs while providing constant and high brine filtrate quality, thus improving the cheese manufacturer’s economics. Combining the unique features of the Microflow microfiltration platform with Pall’s professional service support in optimizing operating parameters, translated into significant benefits for the customer.

 

  • Less than 1 year ROI
  • Minimized waste disposal costs due to extended brine life and high brine recovery from the system, with less then 1 % discharge
  • More consistent cheese quality due to high brine quality
  • Minimized water and cleaning chemical consumption due to a unique cleaning sequence and a simple sanitary system design with no dead legs
  • Reduced labor and downtime due to fully automated cycle programming
  • Reduced maintenance costs provided by high system reliability and proven operation
  • Simple monitoring of module integrity

 

About Pall Corporation

Pall Corporation is the largest and most diverse filtration, separation, and purification company in the world. Pall serves the food and beverage industries with advanced membrane filtration technology and systems engineered for reliability and cost-effectiveness. Easy to install and simple to use, our systems satisfy a wide range of filtration requirements. Our Total Fluid Management approach offers customers solutions to address the needs of an entire process, encompassing filtration products, services, systems and training. 

 

TFF Technology Increases Yield and Reduces Waste Streams

Up to 80% of the extract contained in the surplus yeast that collects at the bottom of tanks after fermentation and maturation can now be recovered rather than disposed of. Beer can be recovered and blended back into the brewing process at a ratio of up to 5% without negatively influencing the beer quality, increasing the yield and reducing the total beer volume needing to be produced. This represents a lower CO2 footprint, reduced water usage, and a lowering of production costs, plus the minimized waste stream reduces disposal costs and ensures a lower level of BOD’s and COD’s are returned back into the environment.
Up to 80% of the extract contained in the surplus yeast that collects at the bottom of tanks after fermentation and maturation can now be recovered rather than disposed of. Beer can be recovered and blended back into the brewing process at a ratio of up to 5% without negatively influencing the beer quality, increasing the yield and reducing the total beer volume needing to be produced. This represents a lower CO2 footprint, reduced water usage, and a lowering of production costs, plus the minimized waste stream reduces disposal costs and ensures a lower level of BOD’s and COD’s are returned back into the environment.
Learn More

Craft Brewery Preserves Image and Limits Losses

Although beer is restrictive to bacterial growth due to its low pH, ethanol concentration, and low oxygen content, the presence of certain beer spoilage bacteria including Lactobacillus, Pediococcus, Pectinatus, and Megasphaera can generate off-flavors, turbidity and acidity. Such quality deficiencies render the product unacceptable and often result in high economic losses and negative brand image. Throughout the production process, undesirable microbial contamination must be prevented to achieve the required final beer quality. Such contamination may originate from ingredients (including yeast), air and water utilities coming into contact with the product, and the environment.
Although beer is restrictive to bacterial growth due to its low pH, ethanol concentration, and low oxygen content, the presence of certain beer spoilage bacteria including Lactobacillus, Pediococcus, Pectinatus, and Megasphaera can generate off-flavors, turbidity and acidity. Such quality deficiencies render the product unacceptable and often result in high economic losses and negative brand image. Throughout the production process, undesirable microbial contamination must be prevented to achieve the required final beer quality. Such contamination may originate from ingredients (including yeast), air and water utilities coming into contact with the product, and the environment.
Learn More

Pall Aria™ System Rescues Bottled Spring Water Producer from Plant Closure

Spring water is a valuable natural resource, which requires good purification treatment before appearing on grocery store shelves as high purity, visually pleasing bottled product. Filtration is a key process step required to achieve consistently high product quality. The costs associated with filtration may be substantial, depending on source water quality. Disposable filters are a technically sound solution but their use may become economically unsustainable in the face of difficult or variable quality source water.
Spring water is a valuable natural resource, which requires good purification treatment before appearing on grocery store shelves as high purity, visually pleasing bottled product. Filtration is a key process step required to achieve consistently high product quality. The costs associated with filtration may be substantial, depending on source water quality. Disposable filters are a technically sound solution but their use may become economically unsustainable in the face of difficult or variable quality source water.
Learn More

Microflow System Offers 10 Months Payback in Cheese Brine Purification

Salting by immersion in brine is used for many varieties of cheese worldwide. During repeated immersions fat, curd particles and microorganisms from the cheese plus the accumulation of proteins and other components builds up a nutrient-rich environment for the salt resistant microorganisms. Reused brine may then become a reservoir of unwanted microorganisms, such as gas- or pigmentproducing bacteria, yeast and mold, or salt resistant pathogens, cross-contaminating the cheese and impacting their quality. Good control of the brine and the brining operation is essential to ensure consistent daily production. Additionally, brine disposal is coming under increasing focus. High disposal costs or volume limitations in specific areas are driving the demand for greater brine reuse, to generate operating cost savings and minimize the plant environmental footprint.
Salting by immersion in brine is used for many varieties of cheese worldwide. During repeated immersions fat, curd particles and microorganisms from the cheese plus the accumulation of proteins and other components builds up a nutrient-rich environment for the salt resistant microorganisms. Reused brine may then become a reservoir of unwanted microorganisms, such as gas- or pigmentproducing bacteria, yeast and mold, or salt resistant pathogens, cross-contaminating the cheese and impacting their quality. Good control of the brine and the brining operation is essential to ensure consistent daily production. Additionally, brine disposal is coming under increasing focus. High disposal costs or volume limitations in specific areas are driving the demand for greater brine reuse, to generate operating cost savings and minimize the plant environmental footprint.
Learn More

Distillers Improve Quality While Reducing Operating Costs with SUPRApak™ Technology

Filtration of spirits can be a challenging task. It is essential to remove contaminants that may cause turbidity while retaining the quality enhancing components in the product. Filter sheets are the traditional method for achieving this delicate balance. Sheets are comprised of a unique matrix of materials that provide an excellent combination of adsorption and depth filtration, making them an ideal solution for turbidity reduction and haze removal in spirits. Filter sheets are available in multiple grades to cover a wide range of applications from filtration of cordials to chill haze reduction in brown spirits to particle removal in white spirits. Additionally many plate and frame filter units have the flexibility to add or remove sheets to suit the batch size, flow rate or the specific product to be filtered.
Filtration of spirits can be a challenging task. It is essential to remove contaminants that may cause turbidity while retaining the quality enhancing components in the product. Filter sheets are the traditional method for achieving this delicate balance. Sheets are comprised of a unique matrix of materials that provide an excellent combination of adsorption and depth filtration, making them an ideal solution for turbidity reduction and haze removal in spirits. Filter sheets are available in multiple grades to cover a wide range of applications from filtration of cordials to chill haze reduction in brown spirits to particle removal in white spirits. Additionally many plate and frame filter units have the flexibility to add or remove sheets to suit the batch size, flow rate or the specific product to be filtered.
Learn More

Fermentation Broth Clarification Systems for Food and Feed Ingredients Manufacturing

Producers of bulk food and feed ingredients such as amino acids, organic acids, and vitamins use fermentation as the basis of their production. Today’s modern industrial biotechnology processes use carefully selected and purified microbial cell cultures to produce an ever-increasing variety of ingredients and increase productivity. During fermentation, the microorganisms multiply in industrial bioreactors, utilizing a carbohydrate source for energy. The course of microbial growth progresses under well-controlled conditions of aeration, agitation rate, temperature, pH and other parameters. Fermentation can last from a few hours to several days. The metabolic end products produced by the microorganisms are the basis for many ingredients used today.
Producers of bulk food and feed ingredients such as amino acids, organic acids, and vitamins use fermentation as the basis of their production. Today’s modern industrial biotechnology processes use carefully selected and purified microbial cell cultures to produce an ever-increasing variety of ingredients and increase productivity. During fermentation, the microorganisms multiply in industrial bioreactors, utilizing a carbohydrate source for energy. The course of microbial growth progresses under well-controlled conditions of aeration, agitation rate, temperature, pH and other parameters. Fermentation can last from a few hours to several days. The metabolic end products produced by the microorganisms are the basis for many ingredients used today.
Learn More

Cider Producer Maximizes Yield and Increases Capacity with the Oenoflow™ HS System

Filtration is a key operation in modern cider production to deliver visually bright and shelf stable product. Traditionally, cider clarification has been performed with diatomaceous earth or sheet based filtration technologies. However, with more favorable economics, easier operation and lower waste volumes, crossflow filtration systems like Pall’s Oenoflow XL system have become more widely adopted over the past decade.
Filtration is a key operation in modern cider production to deliver visually bright and shelf stable product. Traditionally, cider clarification has been performed with diatomaceous earth or sheet based filtration technologies. However, with more favorable economics, easier operation and lower waste volumes, crossflow filtration systems like Pall’s Oenoflow XL system have become more widely adopted over the past decade.
Learn More

TAB Filtration Significantly Improves Ready to Drink Tea Quality and Yield

Ready to drink tea, fruit juices and drinks, carbonated soft drinks, and other beverages are subject to spoilage due to the presence of heatresistant, acidophilic bacterial spores (TAB). The thermoacidophilic spores may originate either from exposure to agricultural raw materials such as in fruit juice production, or from contamination in the beverage ingredients, such as sweeteners, juice and tea concentrates, or flavors, essences, and colors from natural extracts.
Ready to drink tea, fruit juices and drinks, carbonated soft drinks, and other beverages are subject to spoilage due to the presence of heatresistant, acidophilic bacterial spores (TAB). The thermoacidophilic spores may originate either from exposure to agricultural raw materials such as in fruit juice production, or from contamination in the beverage ingredients, such as sweeteners, juice and tea concentrates, or flavors, essences, and colors from natural extracts.
Learn More

Cross-flow Lees Filter Experience Delivers Efficiency and Economy at Yalumba

Recovery of wine from lees represents one of the most challenging forms of filtration faced by wineries. The high concentration and variability of the suspended solids limit the suitable filtration technologies, while strict environmental regulations and sustainability programs are increasing pressure to reduce waste volumes. Traditionally, lees filtration is performed with filter aid based systems like rotary vacuum drum (RVD) or chamber press filters. While these systems typically have good volumetric recovery of the wine from the solids, there are some inherent drawbacks that can affect wine quality. The open design allows for oxygen pick-up and the recovered wine often needs further processing. The wine is typically downgraded in value and used in blends instead of added back to the original batch.
Recovery of wine from lees represents one of the most challenging forms of filtration faced by wineries. The high concentration and variability of the suspended solids limit the suitable filtration technologies, while strict environmental regulations and sustainability programs are increasing pressure to reduce waste volumes. Traditionally, lees filtration is performed with filter aid based systems like rotary vacuum drum (RVD) or chamber press filters. While these systems typically have good volumetric recovery of the wine from the solids, there are some inherent drawbacks that can affect wine quality. The open design allows for oxygen pick-up and the recovered wine often needs further processing. The wine is typically downgraded in value and used in blends instead of added back to the original batch.
Learn More